
HandyMusic Programmer’s Manual
Page 1

HandyMusic 1.2
Macro instrument sound driver for the Atari Lynx

Care and Feeding Instructions

Written and Design by: Osman Celimli

HandyMusic Programmer’s Manual
Page 2

Table of Contents

What is HandyMusic?..2 w

Memory Usage..2
Hardware Dependencies..2
Commonly Used Subroutines ..2
Required Pre-Initialization Variables ...3
Required Constants ..3

Audio Channel Structure ...4
Instruments and Sound Effects ..8

Instrument/SFX Header..8
Instrument/SFX Script ..9
Instrument/SFX Packing...9

Music ..10
Music Header ..10
Music Script...11
Music Data Packing ..12

PCM Sample Playback ...13
HandyAudition ..14

HandyMusic Programmer’s Manual
Page 3

What is HandyMusic?
HandyMusic is a music and sound effects driver for the Atari Lynx based upon macro

instruments. This allows for instruments to have all of the complexities of sound effects instead of
just simple ADSR envelopes, as the instruments themselves are considered to be sound effects
played with a frequency offset by the driver. Single channel 8KHz PCM Playback is also
supported, and samples are streamed from the cartridge to keep a small memory footprint.

Bastian Schick’s BLL kit is required to use HandyMusic, although you are free to modify
HandyMusic for other environments (or other platforms). The contents of the development
package should be directly extracted to BLL’s C:\Lynx folder.

HandyMusic was designed specifically for the Lynx and its limited memory, and thus only
uses about 1.7KB of memory for the sound driver itself, which is expected to reside in the $A000-
$A6AF range of RAM. Operation is fairly simple and after initialization, HandyMusic should be
called once every VBlank through a JSR to “HandyMusic_Main.” All decoding of the music script,
instrument envelope updates, and sound effect envelope updates are performed during this call.
Thus, all timing in HandyMusic is performed based upon a 60Hz tick. Greater precision may be
obtained by tying the driver to a faster timer base (such as 120Hz or 240Hz), but this is not
recommended due to the increased CPU overhead.

This document is intended to be a reference for HandyMusic’s data formats and general
operation. If anything is unclear, it may be helpful to look at HandyMusic’s source, which is fairly
documented.

HandyMusic is completely free to use and modify in your own projects. However, the
authors are in no way responsible for any personal distress, harm, or destruction of property while
using HandyMusic; however unlikely it may be.

• Memory Usage:
HandyMusic in its entirety is designed to occupy $A000-$BFFF on the Lynx,

and is broken into three parts: The driver itself, a sound effects block, and the
music data. They should all be allocated in the following fashion:
o HandyMusic Driver: $A000-$A6AF
o Sound Effects Block

This may be located anywhere in memory by setting the appropriate
variables (HandyMusic_SFX_AddressTableLoLo/LoHi/HiLo/LoLo,
HandyMusic_SFX_AddressTablePriLo/Hi) in HandyMusic. It is most
convenient to place it in the $A6B0-$AFFF range right after the driver.

o Music Block: $B000-$BFFF
The current music track.

• Hardware Dependencies:
In addition to controlling the Lynx’s audio hardware, HandyMusic requires

use of the following components.
o Timer 3 Hardware

This is used for PCM Playback

• Commonly Used Subroutines:
The subroutines usually required by the game programmer are listed below

along with details of their operation.
• HandyMusic_Init

o The initialization routine, should be called once at system startup.
• HandyMusic_Main

o The entry point for HandyMusic’s processing. Call every VBlank.
• HandyMusic_PlaySFX

o Play the sound effect whose number is stored in A.
• HandyMusic_StopSoundEffect

o Stops a sound effect whose priority is in A.
• HandyMusic_PlayMusic

o Plays the music block loaded into $B000-$BFFF.

HandyMusic Programmer’s Manual
Page 4

• HandyMusic_StopMusic
o Stops the currently playing music.

• HandyMusic_StopAll
o Stops all currently playing music and sound effects.

• HandyMusic_Pause
o Pauses HandyMusic and silences all channels (such as when a game is paused).

• HandyMusic_UnPause
o Restores HandyMusic from a paused state, resuming any previously playing music or

sound effects
• HandyMusic_LoadPlayBGM

o Stops playback of the current music track, and loads another track from the cartridge
whose number is in A, then begins playback. This routine is “PCM Safe” in that it will
wait for the current PCM Sample to finish streaming before it loads the new music
track from the cartridge.

• PlayPCMSample
o Starts streaming the PCM Sample to Channel 0 whose sample number is in A.

• Required Pre-Initialization Variables:

These variables must be set by the programmer prior to calling
HandyMusic_Init in order to ensure proper operation of the driver.
• HandyMusic_SFX_AddressTableLoLo

The low byte of the SFX low address table.
• HandyMusic_SFX_AddressTableLoHi

The high byte of the SFX low address table.
• HandyMusic_SFX_AddressTableHiLo

The low byte of the SFX high address table.
• HandyMusic_SFX_AddressTableHiHi

The high byte of the SFX high address table.
• HandyMusic_SFX_AddressTablePriLo

The low byte of the SFX priority table.
• HandyMusic_SFX_AddressTablePriHi

The high byte of the SFX priority table.

• Required Constants:
These constants must be defined prior to assembling HandyMusic.

• FileNum_MusicBase
The file number of the first music track stored on the cartridge (all music files
are assumed to be located sequentially).

• FileNum_SampleBase
The file number of the first PCM Sample on the cartridge (all samples are
assumed to be located sequentially).

HandyMusic Programmer’s Manual
Page 5

Audio Channel Structure
The Lynx contains four identical audio channels which vaguely resemble its eight

hardware timers. A counter is used to clock a polynomial counter, which drives the waveform
generation hardware. There is no envelope hardware whatsoever, and HandyMusic generates all
envelopes in software. However, for all intents and purposes, and because of the way
HandyMusic handles the abstraction of the Lynx’s audio hardware, each channel has the
following properties:

• Priority: The current priority of the instrument or sound effect playing in the
channel. When sound effects and instruments compete for a given audio
channel, those with higher priorities win out. A priority of zero indicates the
channel is currently free (no one is using it). DO NOT USE THE SAME
PRIORITIES FOR INSTRUMENTS AND SOUND EFFECTS.

• Base Frequency: A 10-bit value representing the current base frequency of
the channel. This is set to zero when playing a sound effect, but is used for the
note frequency on instruments. This is actually stored in 16.8 precision, but the
bottom eight and top six bits are ignored by the hardware and used only to
simplify calculations. Each frame the Base Pitch Adjust gets added to the current
Base Frequency, with the new value overwriting the old. This is useful for pitch
slides in music tracks.

• Base Pitch Adjust: A 10-bit value which is added to the Base Frequency
every audio frame, useful for things like pitch slides in music tracks. This is
actually stored in 16.8 precision, but the bottom eight and top six bits are ignored
by the hardware and used only to simplify calculations. Like the base frequency,
this is note exclusive and is set to zero when playing a sound effect.

• Frequency Offset: A 10-bit value used as the offset from the base
frequency. This is the sole frequency used by sound effects, but is used by notes
for variation from their base frequency. This is actually stored in 16.8 precision,
but the bottom eight and top six bits are ignored by the hardware and used only
to simplify calculations. Each frame the Frequency Offset Pitch Adjust gets
added to this value, with the new value replacing the old. Thus the actual timer
write used to drive the polynomial counter at any given audio frame is:

(Frequency Offset += Frequency Offset Pitch Adjust) + (Base Frequency += Base Pitch Adjust)

Where this is a 10-bit result, bits 9-7 are used as the prescale value, and 6-0 are used as the divider value.
Note that HandyMusic treats the prescale and divider values a differently than the hardware, so consider
them to work like this:
 Prescale Value: Clock:

0-1 1us (Consider the Divider 8 bits in this case)
2 2us
3 4us
4 8us
5 16us
6 32us
7 64us

While the divider is a 7 bit value. Thus the final clock is:
___________________________1_________________________

Prescale Clock * (Divider Value+1 if Prescale is <2, or +128 If >=2)
Which ranges from 61.5Hz to 1MHz in a nonlinear scale. Note that there is NO clipping protection in any of
these calculations. So be careful with your frequency choices.

HandyMusic Programmer’s Manual
Page 6

When converting between frequencies (Hz) and HandyMusic’s 16.8 format, the following equation should
be observed:

F = Desired Frequency
p = Number of Polynomial Counter clocks for one full period of the waveform
 For example, this would be 2 for a 50% duty cycle pulse using feedback setting $01,
 or 3 for a 33% duty cycle pulse using feedback setting $3

Fp = F*p;

if(Fp > 1000000.0) div = 0;
else if(Fp > 3906.25) div = (1000000/Fp)-1;
else if(Fp > 1953.13) div = (500000/Fp)+128;
else if(Fp > 976.563) div = (250000/Fp)+256;
else if(Fp > 488.281) div = (125000/Fp)+384;
else if(Fp > 244.141) div = (62500/Fp)+512;
else if(Fp > 122.07) div = (31250/Fp)+640;
else if(Fp > 61.0352) div = (15625/Fp)+768;
else div = 1023;

div = HandyMusic Frequency value used in bits 0-9 of the 16.8 format. All other bits should be set to zero.

• Frequency Offset Pitch Adjust: A 10-bit value which is added to the
Frequency Offset every audio frame, useful for things vibrato in notes and
frequency sweeps in sound effects. This is actually stored in 16.8 precision, but
the bottom eight and top six bits are ignored by the hardware and used only to
simplify calculations.

• Volume: A simple, 8.8 precision volume. Only the top 8 bits are significant to
the hardware. Each audio frame the Volume Adjustment is added to this value,
the new result replacing the old value. There is no clipping in this calculation, be
careful. Note that the 8-bit value written to the volume register is signed, so a
negative value is just a positive value with a different phase. Also, the actual
volume of the audio channel depends upon the channel mode. In nonintegrated
mode, the amplitude of the pulse generated by the hardware is the same as this
value. In integrate mode, the output value is a running total of the previous
volumes, which are either added or subtracted based upon the output of the poly
counter (1=add volume, 0=subtract volume).

• Volume Adjustment: A simple, 8.8 precision volume adjustment. Only the
top 8 bits are significant to the hardware. Each frame this is added to the Volume
value, the new result replacing the old. This is useful for volume envelopes in
both instruments and sound effects.

• Panning: An 8-bit value representing the panning of the channel. Bits 7-4 are
the attenuation for the left speaker, and bits 3-0 are the attenuation for the right
speaker. 1111 is loudest, 0000 is off. This is only useable for music, all sound
effects are forced to use a panning value of $FF (center). Note that this really
only does anything in the Lynx II, as the original Lynx is monophonic.

• Waveshape Selector Mode: The Lynx has two methods for generating
waveforms based upon the output of its polynomial counter. In nonintegrate
mode, the output of the polynomial counter is directly reflected as a pulse
waveform with an amplitude equivalent to the contents of the Volume setting.
These are generally square waveforms. In intergrate mode, the current amplitude
of the channel is adjusted based upon the output of the polynomial counter. If the
output of the polynomial counter is 1, the channel’s amplitude is increased by the
value in the volume register. If the output is zero, the channel’s amplitude is
decreased respectively. These are much more triangular waveforms.

HandyMusic Programmer’s Manual
Page 7

• Shift Register: The 12-Bit contents of the polynomial counter’s shift register.
• Feedback Taps: 9-Bits of feedback connected to outputs 11, 10, 7, 5, 4, 3, 2,

1, and 0 of the shift register in the polynomial counter. This and the shift register
directly effect the waveform generated. For example, a shift register setting of 0,
and feedback tap 0 set to 1, a square pulse will be generated by the polynomial
counter.

• Writeback Disabling: HandyMusic will release control of any channel
flagged as having writebacks disabled. Music and sound effects will continue to
decode normally, but will not touch the actual audio hardware. This is useful for
temporarily borrowing the sound hardware for other uses. For example,
writebacks on Channel 0 are temporarily disabled while playing PCM samples in
HandyMusic.

HandyMusic Programmer’s Manual
Page 8

Instruments and Sound Effects
 In HandyMusic, instruments and sound effects have been merged into a single entity.
This not only allows the programmer to create complex sounding instruments, but allows
HandyMusic to use less space in the Lynx’s already limited memory, leaving more for use by
game software.
 However, while the instruments and sound effects are decoded identically, they are not
stored together. Sound effects are kept on their own in a specially formatted block which may be
located anywhere in memory, while the instruments for a particular song are always packed along
with it.
 The basic format for an instrument or sound effect definition is a simple scripting
language supporting looping and termination which is used to change the state of the audio
hardware over time. A description of the formatting and encoding of the instruments and sound
effects follows.

• Instrument/SFX Header:
Each instrument/sound effect contains a 112-bit header which is decoded before any of

its script is processed. The header is formatted as follows:
[NoteOff Lo][NoteOff Hi][ShiftReg Lo][ShiftReg Hi]
0 8 16 24
[Feedback Lo][Feedback Hi + Integrate Flag]
32 40
[Volume]
48
[Volume Adjustment Lo,Decimal]
56
[Frequency Offset Lo,Hi]
72
[Frequency Offset Adjustment Lo,Hi,Decimal]
88 111

o NoteOff Lo/Hi

The low and high addresses of the note off section of the instrument
script. This is used exclusively for instruments, and is empty for sound effects.

o ShiftReg Lo/Hi
Initial setting of the polynomial counter’s 12-bit shift register. The

contents of the low variable directly correspond to bits 0-7 of the shift register.
However bits 8-11 are shifted up into bits 7-4 of the high variable to better reflect
the actual Lynx register structure.

o Feedback Lo/Hi+Integrate Flag
These contain the inital settings for the feedback register and integrate

mode flag. However, their organization is not very straightforward. The low
variable contains bits 0, 1, 2, 3, 4, 5, 10, and 11 of the feedback enable register.
The high variable contains feedback bit 7 in its own bit 7, and the integrate flag in
bit 5. The rest are unused.

o Volume
The one byte initial volume setting. The decimal is left out here and is

always zeroed at the start of an instrument or sound effect.
o Volume Adjustment

The two byte initial volume adjustment value. First is the one byte
volume adjustment value, then the one byte decimal.

o Frequency Offset
The two byte initial frequency offset value. First the low byte, then the

high. The decimal is excluded and always assumed to be zero.
o Frequency Offset Adjustment

The three byte initial frequency offset adjustment. First the low byte, then
the high, and finally the decimal.

HandyMusic Programmer’s Manual
Page 9

• Instrument/SFX Script:
Following the instrument/sound effect’s header is its sound script. This script is a

simple bytecode with commands for adjusting the properties of the audio channel and
controlling the execution path of the sound script itself. The commands, their format, and
operations are listed below:

o 0: Stop Script Decoding

 Format: [0] (1 byte)
 Immediately stops the decoding of the sound script and frees the

channel.
o 1: Wait

 Format: [1][Number of Frames] (2 bytes)
 Pauses sound script decoding for the specified number of frames.

o 2: Set Shift, Feedback, and Integrate Mode
 Format: [2][ShiftReg Lo][ShiftReg Hi][Feedback Lo]

[Feedback Hi + Integrate Flag] (5 bytes)
 Replaces the current shift and feedback register contents with the

specified new values, stored in the same format as in the instrument/sfx
header.

o 3: Set Volume and Volume Adjustment
 Format: [3][Volume][Volume Adjustment][Volume

Adjustment Decimal] (4 bytes)
 Replaces the current volume and volume adjustment values with the

specified new values.
o 4: Set Frequency Offset and Frequency Offset Adjustment

 Format: [4][Frequency Offset Lo][Frequency Offset Hi]
[Frequency Offset Adjustment Lo]
[Frequency Offset Adjustment Hi]
[Frequency Offset Adjustment Decimal] (6 bytes)

 Replaces the current frequency offset and frequency offset adjustment
values with the specified new ones.

o 5: Set Loop Point
 Format: [5][Number of Times to Loop] (2 bytes)
 Defines the location in the script following this command as a loop point

which will be returned to the specified number of times. If a negative
number is used, the loop will continue infinitely.

o 6: Loop
 Format: [6] (1 byte)
 If the loop is not infinite, the loop counter is decremented and unless the

counter has reached zero, the script decoder will continue decoding at
the loop point. Loops may be four-deep.

• Instrument/SFX Packing:
Instruments and sound effects are packed together in the following format which

may be placed anywhere in memory (assuming the pointers used are correct) for sound
effects, and will be packed along with each piece of music for instruments.

• Instrument/SFX Low Address Pointers
o Contains all of the low bytes of the sound script addresses. Max 256

entries.
• Instrument/SFX High Address Pointers

o Contains all of the high bytes of the sound script addresses. Max 256
entries.

• SFX Priorities (Excluded for Instrument Blocks)
o Contains all the priorities of the sound scripts. Max 256 entries.

• The sound scripts themselves follow in any order you wish

HandyMusic Programmer’s Manual
Page 10

Music
 Music, like sound effects and instruments, uses a simple scripting language. Instruments
may be played for various lengths of time with specified frequency offsets, pitch slides, panning,
and timing. In most respects, the HandyMusic format may be considered a stripped down MIDI
script composed only of note on, note off, panning, pitch slide, and rest commands. Looping is
also supported, and like the sound effects, the loops may be four levels deep. Infinite loops as
applicable in sound effects are identical in music scripts. Script patterns/subroutines may also be
called and returned from, with the same depth limit as loops. PCM sample cues may be used in
Channel 0 only, allowing playback of 8KHz samples in time with music.
 As the Lynx has four channels, each music script is composed of up to four voices, all of
which have a priority which is adjustable over the course of the music script’s life. This allows
tracks of music to become more or less important than the sound effects competing with them for
the hardware. By specifying a priority of zero, a music script is stopped, so a piece of music which
does not need all four channels may use less by specifying an initial priority of zero in its header.
 Instruments for a given piece of music are packed with it, located after the header, but
before the music scripts themselves.

• Music Header:
Located before each piece of music’s instrument data and sound scripts is a 128-

bit header containing information about the track priorities, locations, and instrument table
pointers. The format is as follows:

[Track 0 Priority][Track 1 Priority]
0 8
[Track 2 Priority][Track 3 Priority]
16 24
[Track 0 Script Lo Address]
32
[Track 1 Script Lo Address]
40
[Track 2 Script Lo Address]
48
[Track 3 Script Lo Address]
56
[Track 0 Script Hi Address]
64
[Track 1 Script Hi Address]
72
[Track 2 Script Hi Address]
80
[Track 3 Script Hi Address]
88
[Instrument Low Address Table Pointer Lo,Hi]
96
[Instrument High Address Table Pointer Lo,Hi]
112 128

o Track X Priority
The priority of the given track at its start, if this is a value of zero, the

track is effectively ignored. This may be used to generate music with less than
four tracks.

o Track X Script Lo/Hi Address
The starting address of the sound scripts for each track, which should be

located after the instrument block.
o Instrument Low/High Address Table Pointers

The addresses of two tables which contain the low and high addresses
of the instrument scripts included with the piece of music.

HandyMusic Programmer’s Manual
Page 11

• Music Script:
Following a music track’s header and instrument block is its music scripts, of

which there may be up to four. The scripting commands are made up of one byte blocks
and are slightly similar to those of sound effects, with a few changes. The commands,
their format, and descriptions of their operations are listed below:

o 0: Set Priority

 Format: [0][Priority] (2 bytes)
 Sets the priority of the track relative to the sound effects. Higher priorities

win out when competing for channels, the same priorities should never
be used between sound effects and instruments. A priority of zero
stops the track from decoding.

o 1: Set Panning
 Format: [1][Panning] (2 bytes)
 Sets the panning of the instruments played in the current channel.

o 2: Note On
 Format: [2][Instrument][Base Frequency Lo]

[Base Frequency Hi][Delay Lo] (5 bytes)
 Plays a given instrument with the specified base frequency, then waits

for the given one byte delay
o 3: Note Off

 Format: [3][Delay Lo] (2 bytes)
 Forces the currently playing instrument into the note off portion of its

script, then waits for the specified one byte delay.
o 4: Set Base Frequency Adjustment

 Format: [4][Base Frequency Adjustment Lo]
[Base Frequency Adjustment Hi]
[Base Frequency Adjustment Dec] (4 bytes)

 Sets the Base Frequency Adjustment value, which can be used for pitch
slides, etc. This value is initialized to zero on the start of a song.

o 5: Set Loop Point
 Format: [5][Number of Times to Loop] (2 bytes)
 Defines the location in the script following this command as a loop point

which will be returned to the specified number of times. If a negative
number is used, the loop will continue infinitely.

o 6: Loop
 Format: [6] (1 byte)
 If the loop is not infinite, the loop counter is decremented and unless the

counter has reached zero, the script decoder will continue decoding at
the loop point. Loops may be four-deep.

o 7: Wait
 Format: [7][Delay Lo][Delay Hi] (3 bytes)
 Stops decoding for the specified two byte delay.

o 8: Play Sample
 Format: [8][Sample Number] (2 bytes)
 Begin playback of the specified PCM sample. Only usable in Channel 0.

o 9: Pattern Call
 Format: [9][Address Lo][Address Hi] (3 Bytes)
 Jumps to the address of the music script given, and sets up the current

position in the music script as the destination for the Pattern Return
command.

HandyMusic Programmer’s Manual
Page 12

o 10: Pattern Return

 Format: [A] (1 byte)
 Returns to the portion of the music script which was being played before

the last Pattern Call command.

• Music Data Packing:
Music data is stored in a block format consisting of the music header, instrument

block, and track data. It is expected to reside at $B000-$BFFF only. New music data may
be used by stopping playback of the current music track, and loading another in this
memory space.

o Header
 The Song Header

o Instrument Block
 Two tables of the high and low addresses of the instrument scripts (see

instruments/sound effects secton), followed by the instruments
themselves.

o Track Data
 The music script data for up to four tracks of music.

HandyMusic Programmer’s Manual
Page 13

PCM Sample Playback
HandyMusic supports streaming a single PCM Sample from the game cartridge on

request by the music script or a call to PlayPCMSample. Samples are required to be stored as
8KHz 8-Bit signed monophonic raw PCM data. There is no concept of priority between samples
and the music or sound effects, and sample playback is always performed in Channel 0. Any
music or sound effects currently occupying that channel will be muted for the duration of the
sample playback, but will continue to decode normally.

As PCM samples are streamed from the cartridge, it is not safe to access the cartridge
interface while a PCM samples is playing. Thus it may be wise to ensure Sample_Playing is
equal to zero before loading from the cartridge in your game software. Any loading routines
included with HandyMusic such as HandyMusic_LoadPlayBGM automatically check for activity
by the sample playback routine and will wait for it to finish before accessing the cartridge for any
of their own data.

IRQ-Based Sample playback is extremely resource intensive on the Lynx, especially at
8KHz. Thus it is suggested that sample playback only be used in non-game critical areas or in a
situation where the game tick is less than 60Hz.

HandyMusic Programmer’s Manual
Page 14

HandyAudition
 HandyAudition is a simple Lynx program for testing composed music and sound effects
without having to configure HandyMusic for your current game project. The state of the audio
hardware registers are displayed to help with script debugging. Simply swap out the sound effect
and music blocks used by HandyAudition to quickly test your new sounds.

HandyMusic playing some sound effects and music in HandyAudition.

The default controls for HandyAudition are as follows:

• Left/Right : Select Sound Effect to Play
• A : Play Sound Effect
• B : Stop Sound Effect
• Option 1: Play Music
• Option 2: Stop Music

Label Guide:
• V: Channel Volume
• FB: Low Feedback Register
• DV: Direct Volume (Actual channel output amplitude)
• SH: Low Shift Register
• TB: Timer Backup
• TC: Timer Control
• EX: Extra Audio Bits
• PAN: L/R Attenuation, will read as open bus in the original Lynx

